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STABILITY RESULTS FOR DISCRETE VOLTERRA EQUATIONS
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SUMMARY

Firstly, stability results are presented for a general class of linear
multistep methods for Volterra equations. These results are obtained by de-
riving a recurrence relation of finite length for the discrete Volterra
equations, Secondly, the various results are illustrated by a numerical
example. Finally, results of Lubich are mentioned which do not use finite

recurrence relations.
1. INTRODUCTION

We consider Volterra integral equations of the form
t
(1.1) o(t)y(t) = g(t) + J k(t,s,y(s))ds, t € I := [tO,T].
%o
This equation is called of the first kind if 6 = 0, of the second kind if
8 = 1, and of the third kind if 6 has a finite number of zeros in I. The
initi§1 or forcing function g(t) and the kernel function k(t,s,y) are pre-
scribed, and y(t) is the unknown functionm.
It will be assumed that (1.1) possesses a unique solution in C [I]
which is ensured if g and k are sufficiently smooth and unless 6 % 0,
if kt(t,t,y) is bounded away from zero for t ¢ I and y ¢ R (for precise

conditions we refer to Tricomi [26] and Anselone [3]).

In this paper we concentrate on the stability of numerical methods for



solving (1.1) with fixed step size h., We will confine our considerations to
a general class of linear multistep methods and to stability with respect
to perturbations of the initial fumction g(t) on an infinite interval, i.e.

T + «. The following definition of stability will be used.

DEFINITION 1.1, Let Yu and y; denote the numerical solutions corresponding
to initial functioms g and g*, respectively, and let g — g* ¢ P[to,°]
where P[to,w] denotes a space of perturbations defined on I. Then

(a) Yo and the generating method are said to be stable with respeet to

P[to,mJ if for every € > O there exists a § = §(¢) such that

* *
max | g(t ) ~g (¢ )|s §=max|y -y |
n20 n n n0 * ¢

(b) ¥y, and the generating method are said to be asymptotically stable with
respect to P[to,@] if there exists a § such that

max | g(e)) = g'(t )< 8=y -y >0 as n>o. 0
n20

Depending on the choice of the space of perturbations P[ t0,°°] stronger
and weaker forms of stability are obtained.

In deriving stability conditions so far the greater part of the papers
on stability has used some (linear) test kernel for which one tries to re—
duce the numerical scheme to a recurrence relation of finite length and to
which one applies the theory of linear difference equations. One class of
frequently used test kernels are the polynomial comvolution kermels

m

(1.2) K(t,s,y) = | A, (t=s)ly.
i=0 *

Obviously, by repeated differentiation with respect to t of the corresponding
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Volterra equation we can obtain a differential equation of order m + I.

By a similar operation of repeated differencing the numerical scheme canbe
often reduced to the discrete analogue of a differential equation, viz. a
finite recurrence relation for Yo Another class of suitable test kernels
are the finitely decomposable kernels which also lead to finitg recurrence
relations. In Section 3 and 4 we will discuss the kernmel (1.2) form =1,
in Section 5 finitely decomposable kernels will be treated, and in Sectiom
6 the various results will be compared by means of a numerical example.
Recently, Lubich [19], inspired by earlier work of Nevanlinna (22,23],
has derived stability results without using finite recurrence relations. In

Section 7 some of his results will be presented.

2. VLM METHODS

A simple way of discretizing the equationm (1.1) consists of writing

this equation with t = tn t= t_ 4nh for n = O(1)N, h fixed and such that

0
ty = T, and approximating the integral term by some suitably chosen qua-
drature rule. The numerical solution can then be obtained by solving the
resulting algebraic equations successively. This method is called a direct
quadrature (DQ) wethod. Such methods do not always produce satisfactory re-—
sults. For instance, if Gregory quadrature rules (for a definition see e.g.
{4, p. 117]) are used, equations of the first kind cannot be solved because
the numerical method does not converge (see [18, 11]), and equations of the
second kind in which the kernel has a large Lipschitz constant with respect
to y, will often require a much smaller integration step h then necessary
for representing the solution of the equation. In order to overcome these

difficulties several alternative methods have been proposed (see [28, 30, 13]).

These alternative methods together with the above mentioned DQ method can



be described by the following Volterra linear multistep method (VLM method).
Let ?n(t) denote some numerical approximation to the so-called lag term
function

s
(2.1) F(t,s) := g(t) + J k(t,s,y(s))ds

t

0
at the point s = t and define the VIM formula

K K K K K
2.2) Y a0 .y .+ ) ] 8..F .(e.)=h ) ¥ y..k(c,.
jsp 1+ ®witoio Lo, ok 1] n~1"'n+j 520 jook ij n+j?
tn-i’yn-i)

for n = x(1)N, where en—i i= e(:n-i) and Yys «=+¥_y are assumed to be pre-
computed by some starting method. Then the VLM method consists of two com~
ponents: the VIM formula (2.2) and a quadrature rule for approximating

F(t,s). Usually, the quadrature rule is of the form

1
(2.3) F (t) == g(t) +h zzo vk (e tpuyp) .
k for n < k
- F(t,tn) - En(h;t). n = { - ~

n for n 2 x
where the w ol denote given quadrature weights and Kk is sufficiently large in
order to obtain a sufficiently small approximation error En(h,t). The lag
term formula (2.3) requires the starting values Vg Yy e Yo

The parameters as, Bij and Yij determine the accuracy and stability of

tvhe VLM method. For convergence results in the case of 6 = 0 or 6 = |, we
refer to [14]. Here we concentrate on the stability of VLM methods to be dis—
cussed in the remaining sections. This section is concluded with a few exam

ples of VLM methods.
EXAMPLE 2.1. The DQ method can be presented as the simple VLM method

(2.4) Bn Yo~ I-’n(t:n) =0,
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If E(h,t) = 0(h") as h > O uniformly for all t =ty *oheland the
starting errors are O(hq) then the DQ method is of order p = min {q-1,r}
if 8 = 1 and g,k are sufficiently smooth. For 6 = 0 convergence is not

guaranteed (see [28]). [

EXAMPLE 2.2, Consider the VLM formula

2.5) 3enyn - Aan-lyn-l * en—2yn—2 * 3Fn(tn> - aFn(tn+l) +Fn(tn-t-z) =
= th(tn,tn,yn)
which was called in [13] an Zndirect backward differentiation formula (IBD

formula). It generates a method of order p = min {q,r,2} for second kind

equations and first kind equations as well. (0
3. THE BASIC TEST EQUATION

We start with the derivation of a recurrence relation of fixed length

for the VLM solution of the Volterra equation
t

(3.1) o(t)y(t) = g(t) + J £(s,y(s))ds.

&)

The linear case where f(s,y) = £y for ¢ constant, is called the basic test
equation for stability. It was proposed by Mayers [21] and extensively used
by Baker and Keech [6] in deriving stability results for the DQ method.

In deriving stability results for the VLM method it is convenient to
introduce the forward shift operator E and the polynomials

g (‘2 Bij>ZK—i,Y(t)= E (_E Yij)zK_i.

K .
(3.2) az) = ] o2 7, 8(2) =
i=0 120 Vj=—k =0 \j=—k

THEOREM 3.1. For equation (3.1) the VLM method is algebratically equivalent

with the recurrence relation

K K
- = K
(3.3) «(B)8 y = hy(B)E(t_,y ) =-E iZO j}_K Bijg(tn+j), nz0,
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provided that B(z) = 0 (Z.e. the VIM is (a,y)-reducible). 0

From this recurrence relation and Lemma 3.1 stated below, comclusions
can be drawn on the behaviour of Yyasare (with h fixed) in the case of
the basic test equation. We first state this lemma which is proved e.g. in

[25, p. 2051 and then give a stability result in the form of Corollary 3.1.

LEMMA 3.1. Let G(z) be a polynomial satisfying the root condition (that is
with all its zeros on the unit digsk those on the unit circle being simple
zeros). Then there exists a constant C such that the solution of the linear,

inhomogeneous difference equation G(E)yn =g n 2 0 satisfies the inequa-

n+m’>
lity

n
ol < of max Iyl v ] [gpl}onzm,
27 logpen1 b gEm t

I- G(z) s a Sehur polynomial (that is all zeros cre within the unit eircle)

then

ty|sc{ max |y,| + mx[EI},nzm. 0
n OsZSm-lL msI.Sn!'

COROLLARY 3.1. Let 6 = © or 6 = 1, let B(z) = 0 and let k(t,s,y) = Ey. Then
the VLM method is stable with respect to the space of perturbations
(a) P[to,‘”] = Ll[:o,w] if 6a(z) - h&y(z) satisfies the root condition

(b) P[t:o,m] =C [to,w] if 8a(z) - h&y(z) is a Schur polynomial. 0O

EXAMPLE 3.1. The VLM formula (2.5) can be characterized by the polynomials
2 _ _ .2
a(z) = 32" - 4z + 1, B(z) = 0, y(z) = 22",

Thus, the corresponding VLM method is stable with respect to C[to,”]: (i)

for all £ if 6 = 0; (ii) for those £ such that 3z2 - 4z +] - Zhiz2 is aSchur
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polynomial if 8 = 1 (this polynomial is easily recognized as the character-
istic polynomial of the two-step backward differentiation method which is

known to be a Schur polynomial if Re £ < 0). n}

EXAMPLE 3.2. Consider the VLM formula (8=0,1)

~ ~ 1
n—l] * Fn-l(tn—l) —Fn—l(tn) = _Z.h[k(tn’tn’yn) * k(tn—l ’tn’yn)]

6ly -y
which belongs to the class of modified multilag (MML) formulas proposed by

Wolkenfelt [28,30]. The polynomials «,8 and y are given by
a(z) =z -1, 8(z) =0, y(z) = %(2+1)

For 8 = O we have stability w.r.t. Ll[to,m] and for & = 1 w.r.t. CCto,v]

provided that Re £ < O, g

The above .stability results do not apply to third kind Volterra equa-
tions because the recurrenmce relation (3.3) when applied to the basic test
kernel, does not reduce to a constant coefficient recursion. We also observe
that the stability conditions expressed in Corollary 3.1 do not involve any
knowledge of the lag term quadrature rule. Thus an efficient lag term formu-
la can be conbined with a stable pair {a,y} to obtain an VLM method that can
be easily implemented on a computer.

In analogy with ODEs one may define the stability region R as the set
of points hi € € where the VLM method is stable. If R contains the whole ne-
gative axis then the method is called Ao—stable (when applied to the basic
test equation). If the whole left half-plane is contained in R then the VLM
method is ealled A-stable.

In.order to see whether there exist A-stable, (o,y)~reducible VLM meth-

ods which are convergent, we should know what conditions convergence imposes



on the polynomials {c,y} (see [14]).

THEOREM 3.2. Let B(z) = O. The conditions to be imposed on the polynomials
{a,v} in order to obtain a convergemt VLM method are: (7) <if © = | then
{a,v} should generate a comvergent LM method for ODEs;(ii) if 6 = O then y

should be a Schur polynomial. [0

Since there exist A-stable, convergent LM methods for ODEs, we conclude
from Corollary 3.1 and Theorem 3.2 that there exist convergent, (a,y)-reduc-
ible VLM methods for second kind equations which are A-stable w.r.t. C[to,-].
For first kind equations we see that convergence implies stability w.r.t.
L'[to,-n].

The above considerations do not apply to e.g. the DQ methods because of
the condition B(z) = 0. It is possible to include such non-(a,Yy)-reducible
VLM formulas by imposing additional conditions on the lag term formula. We
will not work this out for the basic test kernel but instead we give in the
next section an analysis of the convolution test kermel of which the basic
test kernel is a special case.

Finally, we remark that the stability criteria derived for the basic
test equation may be indicative for the stability of methods applied to more
general kernels of the form K(t,s)y. In practice, ome replaces £ by K(t,s)

with t, £ s < t < T.

0 <
4. THE CONVOLUTION TEST EQUATION

It has been observed by Kershaw [17] that the use of the basic test
equation "is obviously convenient, however, its true relevamce to the inte—
gral equation situation does not appear to have been thoroughly examined”.
In order to get some insight to what extent the stability criteria derived

on the basia of equation (3.1) change if we are dealing with a more general
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equation, several authors have considered the convolution equation [29, 8]
t
(4.1 ey(t) = g(t) + J [ +n(t-s)If(s,y(s))ds
%o
with £ and n constant. The linear case is called the convolution test equa—
tion.

We will not restrict our considerations to (a,y)-reducible methods; in
order to facilitate an elegant analysis we require the quadrature rule used
for computing the lag term to be (p,0)-reducible (cf. {20, 31]). Let the po-
lynomials
i

~
b.z
i

It~

3 .
(4.2) F(z) t= ) 3 2%, o(z) :=
- i=0

define a convergent LM method for ODEs, then the quadrature rule (2.3) is

called (5,9)-reducible if
0 for 4£=0(1)n-%-1

R
(4.3) § . ={~ . , n=F, F+1, ...,
= bn—l for n-k(!)n

(We have added the tilde in order to indicate the relation with the lag term
?n(t).) For the analysis of more general lag term formulaswe refer to[6, 28, ].

In addition to the polynomials a,y,p and g we define the polynomials

K . K
B - et - 3 . af . - 1
(4.4) B(z) : izo Bz LB, : ng_KJ Bygs B (@) 1= kB(2) - 28" (2)

and similarly the polynomials y(z), y#(z), B'#(z) and '5#(2).
The analogue of Theorem 3.1 now reads (cf. [15, 9]):

THEOREM 4.1. For equations (4.1) the VLM method with (§,0)-reducible lag term

18 algebratcly equivalent with the recurrence relation



*.5) Fr®a®e y + th 5T @IBEFE - yEFE I,
+ nhz{sr"w)tﬁ(m?x‘(a) - T®E® - Y ®Fm]
+ o) LB(EYS (2 + B (E)E(E)J-E”(E)S(ms(x)}f(:n,yn)
~’f(E)E"('f E ), nz20
° i=0 j=x Bij 8(Eqay) > 22 0
where r = | if B(z) = 0 and r = 2 otherwise. 0
COROLLARY 4.1. Let 6 = 0 or 8 = 1 and let k(t,s,y) = [§ + n(t-s)1y. Then the

VLM method with (F,8)-reducible lag term is stable with respect to

(a) Pltg,=] = L‘fto,ml if

(4.6) 687 (2)a(z) + £h 37 (D) [B(2)F(2) - v(2)F()]
+ nhz{'ﬁr-] @B(@)F(2) -7 (2)8(2) ~v' (25

+ 3(2)18(2)5" (2) + 8* (227 (233 —s”(zﬁ(z)e(z)}

satisfies the root condition.

(®) Pley,=] = Cley,=l 2f (4.6) 25 a Schur polynomial. 0O

EXAMPLE 4.1. Consider the DQ méthod applied to the basic test equation (i.e.

n=0). Then a(z) = 1, B(z) = -1 and y(z) = 0 so that (4.6) reduces to
(4.6") 6 p(z) -£h ¥(2).

For 6 = | this leads to the same stability regions which apply to the LM
method {F,0}. In particular, if {§,0} is Ay~ or A-stable then the DQ method
is also AO— or A-stable (w.r.t. CEto,m]). For 6 = 0 we find that at least
G(z) should satisfy the root condition. Thus, the higher order Gregory rules

which are based on the Adams-Moulton methods do not generate a stable DQ

method for first kind equations because G(z) do not have all its roots on
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the unit disc. O

In actual application, the Gregory rules are popular because of their
easy implementation on a computer. The preceding example, however, shows
that for second kind equations (6=1) the DQ methods have the rather modest
stability regions possessed by the Adams-Moulton methods and for first kind
equations the higher order methods are even umstable. This observation was
precisely the reason for introducing alternative methods such as the IBD
methods (cf. Example 2.2) and the MML methods (cf. Example 3.2 ).

As for the basic test equation one may define for the convolution test
equation the stability region R which contains all points (E,h,nhz) for which
the VLM method is stable. The method is called Va—stable if R contains the
points {(€,n) [£ < 0, n s 0} (cf. [8, 291). Evidently, V -stability is the
analogue of Ao-stability defined in the preceding section. It has already
been observed that Ao-stable DQ methods do exist. This raises the question
whether Vo—stable DQ methods exist. Wolkenfelt [29] proved the following ne-

gative result.

THEOREM 4.2. For & = 1 DQ methods with (§,¥)-reducible lag term cannot be

V,-stable.
Amini [1] considered the Vo—stability for the class of MML-formulas'
defined by
L3 ~ ~
S bagyy * L ogloyy g + B (e —F (e, )]

Yy _:)e

o-i

K
=h ) y.k(t ,t s
jmp F ontm-i

THEOREM 4.3. For 0 = 1 MML methods with (p,d)-reducible lag term cannot be
Vo-etable. u]
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Nevertheless, the MML methods behave much more stable than DQ methods (cf.
[(301).

Next, we consider the class of indirect limear multistep (IIM) methods,
an example of which has already been given in Example 2.2 . These methods

are defined by the ILM formula [15]

K k=i [
(4.8) ] fea,y .+ I v;8, . F .(t_ )I=h J y,k(t_.,t. ..y .),
i=0 1i"n-1 J“i 1 1+] n-1 nt+j i=0 1 17 B=1 " nml

where {63} define a numerical differentiation formula. The corresponding po-~

lynomial (4.3) is given by
(4.9) 5(2)(6a(z) - &h v(2)] - nh>&(z) v(2).

For 6 = | this polynomial is identical to the characteristic polynomial

Brunner and Lambert [7] derived for their stability test equation for inte-
gro-differential equations. Since in that paper stability regions are given
which do contain the points {(hE,hzn) | £ <0, n £ 0}, ve may conclude that

there exists Vo—stable ILM methods for the second kind test equatiom.

EXAMPLE 4.2. Let {§,5} and {a,y} correspond to the trapezoidal rule and the
backward Euler rule. Then the four different methods which can be formed are
all Vo-stab].e for the convolution test equation of the second kind. [

So far we have considered the case 8 = 1, Next, consider the case 6 = 0.,

For the DQ method the polynomial (4.6) is given by
(4.10) B(2)[85(2) - £h F(2)] ~ mZ2lF(@F' () - 3(2)F (223,
which for 8 = 0 can be written in the form

(4.11) p(2)3(z) - (— % h )z{a(z)s'(z) - 2(2)5"(2) 1.
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This polynomial can be interpreted as the characteristic polynmomial of an
IM method {pl,a]} for the ODE y'(t) = (-n/&)y(t). If the DQ method is Vo—
stable, then -n/f assumes values in the range (-=,0). Hence, we only have
vo—stabilir_y if the IM method {pl,ol} is Ao—stable. Since pl(z) is of degree
2% and o](z) of degree 28 - 1 the LM method {pl,al} cannot be VO——stable. Thus,
THEOREM 4.4. For 6 = 0 D methods with (§,8)-reducible lag term cannot be

Vo—s table.

For the MML formula (4.7) the polynomial (4.6) reduces to

(4.12) P(z)l6a(z) - ehy(z)] - nhzfa(z)a'(z) - auzK 5(z)

s @@ -z v (1,
which again can be associated to an LM method {Dl’ol} for the ODE
y'(t) = (-n/€)y(t) if 8 = 0. It has not yet been investigated whether this
LM method can be made Ao-stable (implying Vo—stability for the MML method)
by appropriate choice of the polynomials &, Y, p and &, and taking into ac-
count the convergence conditions.

Finally, we consider the ILM formula (4.8) with characteristic polyno-

mial (4.9) which for 6 = O assumes the form
“.13) @@ - (-2

THEOREM 4.5. Let the LM method (5,3} be A,-stable. Then for 6 = 0, ILM
methods with {p,0}-reducible lag term are Vo-stable with respect to
(a) P[to, m3=-L1Et0,"cf.'| if v(z) satisfies the root condition.
(b) B[ £gs® J=C[t0,°°] if v(2) <8 a Schur polynomial. 0
As for the basic test equation , the stability conditions based on the

convolution test equation are applied to more general convolution kernels
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K(t-s)y by putting § = K(0) and n = K'(t) with t € I.
5. FINITELY DECOMPOSABLE KERNELS

Instead of proceeding along the lines outlined in the preceding sec-
tions and deriving recurrence relations for the case of the polynomial con-
volution kernel (1.2) (cf. [2]), we approximate the kermel k(t,s,y) by a
finitely decomposable function, i.e.

o -> >
5.1 k(t,s,y) = | g, (DE (5,) =: < 6(0), Fs,y) >

u=1
where <, > denotes the inmer product and E, .E" denote vectors with components
gu, fu (u=1,2,...,m). If we use the approximation (5.1) then the solution
y(t) of (1.1) satisfies the equations

' (e) = Fe,y(0)), (e =0

(5.2) { N .
8(0)y(t) = g(t) + < &(v), o) >
The VLM method when applied to a Volterra equation with kernel of fini-
tely decomposable form turns out to be a discretization of the system (5.2).

In the following theorem which provides this relation we use the notation

¥ o= f(tn,yn), En = E(:n).

THEOREM 5.1. For kernels of finitely decomposable form the VLM method is al-

gebraically equivalent with the recurrence relation

~

{p(}z)ﬁlu = 1o (E) Fn, nz0

o i Pl e
.0 .y .= ,[v..h<G s F__. >
i=0 1 0-1 "1 .24 =i 1] n+] n-1

>
< 8i(8egag) @ < Ege Ty 2 )]s m 20
where {p,8} defines the lag term quadrature rule. 0

Unlike the recurrence relations presented in the preceding sections,
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the recurrence relation provided by this theorem generally does not have
constant cefficients when applied to kermel functions with fu(s,y) = £uy N
Nevertheless, it provides some insight into the stability of the VLM method
as we will see in the following subsections.

It should also be observed that stability results obtained for decom—
posable kernels ¢ C hold for arbitrary kernels ¢ C because (by the Stone-
Weierstrass theorem) the class of continuous decomposable kernels is dense
in the class of all continuous kernels and because the VLM solution depends

continuously on the kermel provided that k is sufficiently smooth [9].

5.1. Relation with ODE methods if & = 1

Suppose that all coefficients in the VIM formula vanish except for

e, = 1, and BOO = - 1, to obtain the D@ method (see Example 2.1). If 8 = 1,

0
then (5.3) is recognized as an LM discretization of the system (5.2). Con-
sequently, if the LM method {5,5} is suitable for the integration of (5.2),
then the DQ method based on {§,5} is suitable for the integration of the Vol-
terra equation with kernel (5.1). An advantage of this approach is that the
well-developed theory for ODEs can be exploited. On the other hand, one
should know something about the decomposition approximating the given kermel.
For a further discussion we refer to [9].

Next differentiate the second equation in (5.2) to obtain (for 831)

B (e) = Fe,y(e))

(5.2) N .
Lyt(e) = g'®) + < &' (), T(e) > + < &(v), F(e,y(r) »

Let these differential equations be integrated by the LM methods {p,5} and
{d,¥}, respectively and replace the derivatives g' and G' by numerical appro-

ximations of the form:



(5.4) g'(t) = b t@®ale),

where 1(z) is a polynomial generating the numerical differentiation formula.

The numerical scheme takes the form

(5.5)

p®B, = W¥EF(e,,y),
{ 1

a(B)y, = hy(B)Ih t@gle) + < b @), Ty >
> ->
+ < 6(e), F(t ,y )>].
A comparison with (5.3) reveals that (5.5) is a special case of a VLM for-
mula. In [15] this type of formula was called an indirect linear multistep
formula (see also Section 4). The stability properties of ILM formulas are

largely determined by the polynomials {§,5} and {a,y}, and can be chosen ap-

propriately by using ODE stability theory.

5.2. Convolution kernels

In this section we derive a general stability result for convolution

kernels of the linear form:

(5.6) k(t,s,y) = K(t-s)y.

Let us first assume that k is decomposable, i.e.
(5.7) K(t-s) = < &(t), F(s) >.

Introducing the vectors

K K
> . >T.T > T
(5.8) Vo= ly, U T, w = I iZOjE_K B;58(En5)s 05 cues O3

the recursion (5.3) can be written in the form

9 Rassias, Math. Analys. 129



*

K ~
(5.9) ] B,V _; =%, « = max{c,k}
i=0

where the matrices Bi(n) are given by

L, w D
1 1 1
D g
1
Bi(n) = E o ._' 0
N 3.1
- 1 1

with

K
L; =6, ~h jg_( ¥ 5K b

W e T e g ey N e CEne (e o)
i ¢ o ij 8 tnsi’ i TREIA LN

(W)

and with the convention that Li = Mi =0 for i > « and Zi = Ei = 0 for

i>x.
In analogy to the linear stability analysis used in ODEs one may intro-—
duce the concept of local stability at a point ts» that is we require the

relation

*
K
' - a -
(5.9") iZO B,(@v__; =%, 10 fixed

to be stable, rather than (5.9). It is to be expected that local stability

in a sequence of points LI cees b implies '"global stability" in

n+l’ +r

the range [tn’tn+r3 provided that the matrices Bi(n) are slowly varying. Fol-

lowing {12 Theorem 5.2 can be proved.

THEQOREM 5.2. Let 8320 or 021 and let k(t,s,y) =K(t-s)y withKe C[to,mi. The

VLM method with (§,8)~reducible lag term is locally stable at all points



*

t , n 2 k with respect to the space of perturbations e

n ®] if the poly-

0’

nomtal
* *
S5 ~ $ ~ S R PRt B
(5.10) izojéo 8a,3; + heglKEBiibj - yjzaiJK((£+J)h)Jz
8 a Schur polynomial. Here a; = bJ. =0 for j >k and o =Bip =i = 0 for

i>«k. O

We observe that the characteristic polynomial (5.10) does not depend
on n so that the local stability conditions to be derived from this theorem
hold in the whole integration interval. Notice also that (5.10) only contains
the function K(t) and does not refer to a particular decomposition of the
form (5.7). Thus, the theorem applies to arbitrary continuous, linear convo-
lution kernels.

In practical applications Theorem 5.2 yields complicated (local) sta-
bility conditions unless k + k" is small (for a worked-out example see Sec-
tion 5.3). However, some insight into the local stability behaviour can be
obtained if K{(£+j)h) is sufficiently close approximated by a truncated

Taylor expansion.
(5.11) K((€+j)h) = & + (L+dh n + ...

where £ := K(0), n = K'(0), ... . ILf only one term is used we obtain on sub-
stitution into (5.10) the polynomial (4.6') derived for the basic test equa-

tion, and if two Taylor terms are used we obtain the polynomial

(5.12) 85¢z)a(z) + En[B(2)5(z) - v(2)p(z)]

+ 2B (2)8(2) - T(@)F(2) - v (2)8(2) + B(2)3T(2)7.

A comparison with (4.6) reveals that (5.12) and (4.6) are identical if the
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VLM formula is (a,Y)-reducible (B8(z)=0). For B8(z) # O the characteristic po-
lynomials differ which may be explained by observing that (5.12) character—
izes the local stability behaviour whereas (4.6) characterizes the global
stability of the method. A further consequence of the local stability ap—
proach is the approximation (5.11) to be valid only in a small neighbourhood
of t = 0, whereas global stability requires the approximation to be valid in
all points of the domain of definition. Thus, adopting the validity of Local
stability analysis, and assuming that K(t) and K'(t) are slowly varying in
the interval [0,(»<+n<*)h], we expect stabillity w.r.t. Ll[to,w] if (5.12)

(with £=K(0), n=K'(0)) is a Schur polynomial.

EXAMPLE 5.1. In the case of the conventional DQ method the polynomial (5.10)

reduces to
. o .
(5.10") 05(z) - h bjx(jh)zK 3

j=0

a result already obtained in [12]. In particular, if all coefficients Ej but
one vanish (so-called local differentiation methods (16]), we obtain a poly-
nomial in which only one K(jh) value is involved. For instance, if {§,5} cor-
responds to a backward differentiation formula we obtain 0 p(z) - go Ehzz
where £ = K(0). For the convolution test equation (4.1) this results in a
Locally Vo—stable DQ method with respect to perturbatioms in Al [to,m} both for

6=0and6=1. 0O
6. NUMERICAL ILLUSTRATION

We derive the various stability conditions for the DQ method generated
by the trapezoidal rule when applied to the second kind equation (cf. Garey

[1ol)



t
(6.1) y(t) = % A(l-tz)ln(lﬂ) +%A tz - (%Ml)c +1- AJZn(l-r:—s)y(s)ds
0

with exact solution y(t) = 1 + t.

When the stability conditions based on the basic test equation are ap-

plied, we find from (4.6'), with 8 = 1, § = z - 1, § = 3(z+1) and £ = K(t,8),

the stability condition (w.r.t. Lt [0,*]):

(6.2) 2 -1 - %hl((c,s)(zﬂ), 0<s

A
[ad
'

= should satisfy the root
condition.

Evidently, this condition is satisfied in the case of equation (6.1) for all

hx 2 0.

Using the convolution test equation, we find from (4.10) the stability

condition (w.r.t. L1[0,=]):

(6.3) =12 - 1K) 2-1) - b¥2K (0), t e [ey,=] should satisfy the

root condition.

Applying Hurwitz criterion this condition reduces to

- . 2
(6.3") K(0) < 0; K'(t) < 0, t ¢ {0,0]; h<——"——, t ¢ [0,=].
/K" (1) ]

For equation (6.1) this leads us to the condition h < 2V(1+t)/x, A > O.

Next we consider the polynomial (5.12) yielding the local stability con-

dition (w.r.t. L'[0,=])

(6.4) z=-1- %hK(O) (z+1) - %hz K'(0) should be a Schur polynomial.

This is satisfied if

(6.4") K(0) < 0; K'(0) < 0; h<"”—z——‘K,2(0)| » or K (0)<0;3K'(0)20;h<
-2K(0),
K" (0)

8o that in case of equation (6.1) the local couditiowh <2/vX, A>0 is obtained.
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Finally, we choose the polynomial (5.10') as our starting point to

obtain the "rigorous' local condition (again w.r.t. L'{o,=1)

(6.5) D1 - $hK(0)Jz ~ [1 + $0K(n) | should be a Sehur polinomial,
leading to the condition

(6.5") [X(h) + K(0)il4 + hK(h) - hK(0)] < O,

and in the case of (6.1) to the step size condition h < 4/A€n(l+h), A > Q.

Summarizing, the following stability conditions are found for (6.1):

test equations used condition (A =100, T=4)
basic test equation Ahz20 no condition
convolution test equation h< 2/?1—;?)—/5\ h<. 20
(appr. (5.11) h<2/VA h<. 20

general convol. eq.
rigorous h< 4/ Mn(l1+h) h<. 21

In order to test these results we have integrated (6.1) with A = 100

and T = 4 to obtain the accuracies (measured by the number of correct signi-

_10

ficant digits sd := log|relative error|) listed in the following table:

h .24 .23 .22 .21 .20 .19 .18 .17
sd =7.81 -6.47 -4.87 -2.77 1.88 2.70 2.61 2.65

These figures clearly show for this example the reliability of the local sta-
bility conditions and the too optimistic prediction if the kernel is appro-

ximated by the basic test kernel,
7. NEGATIVE DEFINITE CONVOLUTION KERNELS

Recently Lubich [19] has developed global stability results for (§,8)-

reducible DQ methods when applied to second kind equations with convolution



kernels of the form
(7.1) k(t,s,y) = £ K(t-s), Re £ <0

where K(t) is a continuous, positive defintite function e L1[m+] . Here, a
continuous function a : R + C is said to be positive definite if

1 ale,;~t)z.z, 20

N i i

i,i ] ]

for any choice of finite sequences {ti} and (zi} with t; € Randz; € C. Si-

- «© . s . . . . -
milarly, a sequence (an}_m is said to be positive definite if

for any choice of finite complex sequences {zi}.
This work extends earlier work of Nevanlinna [22, 23]. Without proof we

give the basic lemma's and the stability theorem from Lubich's paper.

LEMMA 7.1. Let h > 0. If a2 : R_~ C and {ML}Z are positive definite, then

the sequence {wza(Zh) }; 18 again positive definite. [

LEMMA 7.2. (Toeplita, Carathéodory). The sequence {a }z s positive definite

n
iff it is bounded and Re ZZ=0 a‘ezz 20Zn |zl <1, 0O

LEMMA 7.3. Let w(z) i= p(z )/o(z ") = £ wyzt. The stability region R of
the LM method {p,0} contains an open disc (stability disc D) of radius r in
the left half-plane touching the origin iff there exists a number ¢ such that

the sequence (wo+c,wl PR .} s aposttive definite sequence. Here c=1/(2xr). 0O

LEMMA 7.4. (Lubich, Paley-Wiener). Let {yn} satisfy the recurrence relation

(7.2) y.

n
A= 8t zzo b((a-8)h)y,, n 2 0, h > 0
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where b(t) e ' [R Jand let
(7.3) 3 bzt # 0 for Izl < 1.
250

(a) Yo > 0 whenever 8, ™ 0 as o+ = tff (6.3) is satisfied.

(b) Yo 18 bounded whenever 3 s bounded as n + » Tff (7.3) is satisfied. 00

THEOREM 7.1. (Lubich). Let R contain a stability dise D of radius »r, let
h & e D, and let k(t,s,y) be of the definite convolution form (7.1) with
K(0) = 1. Then

(a) Yy > 0 whenever g(tn) +0as n+

(b) Yn 18 bounded whenever g(cn) is bounded as n + ». [

Sketch of the proof. First the numerical scheme is written in the form (6.2)

so that by Lemma 7.4 it remains to verify Paley-Wiener's condition (6.3) with
b(£h) = Ehu,K(£h). By Lemma 7.1 and 7.3 the sequence {(uy+(2r) )K(0),

wll((h), wzl((Zh), ...} is positive definite, hence by Lemma 7.2

Rezi mzk(lh)z£2~57‘(,-2-2-=~% for lz| < 1.
=0

Thus 22-0 wp K(lh)zl # 1/(Eh) for Eh ¢ U which is just the Paley-Wiener con—

dition. [0
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